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PART-I (Multiple Choice-based QuefStions) Insréctions for Questions 1 to 50: 
• Choose the correct answers for the following questions.
• Each question carries 3 marks.
• No Data Book�Áables are allowed; assume the data if required anywhere.

[3 X 50 = 150] 1. Every non-zero square matrix A can be expressed as the sum of some symmetric matrix Band some skew-symmetric matrix C. If the matrix A is[� !] , then Band C (respectively)are:
(a) [-2 5] [4 -2]5 8 ' 2 0 
(b) [2 5] [o -2]5 8 ' 2 0 
(c) 

[2 8] [o -2]
8 2 ' 2 6 

(d) [8 2] [-6 1]
2 3 ' -1 5 2. Given that B = [ � ! J find a one non-zero vector U = [;] such that BU = 6U.

(a) [!]
(b) [!]
(c) [-;J
(d) [�3]3. Let W be the subspace of all symmetric matrices in M2x2 , Then the dimension of Wis: 
(a) 1

(b) 2

(c) 3(d) 4
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4. The eigen vector of the m:atrix [:-(a) [2:] (b) [:k](c) [ ;: ](d) [�:] O ] associated with the eigen value l = 3 is: -1 5. Which_ of the following is a linear transformation?(a) T: R ➔ Rs. t. T(x) = x2(b) T: R ➔ Rs. t. T(x) = x + 1(c) T: R ➔ Rs. t. T(x) = sinx(d) T: R2 ➔ R 2 s. t. T(x,y) = (x + y,x)6. The kernel of the linear transformation T: R3 ➔ R2 defined by T(x) = AX, where
A=[ 1 -1 -2] is:

-1 2 3 ' (a) (t, t, -t)(b) (t, -t, t)(c) (-t, t, t)(d) (t, t, t)7. Find the rank and nullity (respectively) of the linear transformation T: R3 ➔ R3 defined bythe ma� A=[: [ -J(a) 1 and 2(b) 2 and 1(c) 3 and 0(d) 0 and 3
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8. The standard matrix for the linear transformation T: R3 ➔ R2 defined by T(x, y, z) = (x -2y, 2x + y) is:
9. 

(a) [� � �J(b)(c)
(d) 

[ 1 2 OJ-2 -1 0 [1 -2 OJ2 1 0 
[-2 1 OJ1 -2 0 If A = -1 1 0 and I = 0 1[ 2 o ol [1 0 

5 3 -3 0 0 (a) A3- 6A2 + 11A- 61 = 0(b) A3- 7 A + 61 = 0(c) A3- 7 A2 + 6/ = 0
(d) A3 + 7A-6/ = 0

i], then which of the following is correct?10. Which of the following functions is continuous at x = O?(a) f(x) = �
X (b) f(x) = �X (c) f(x) = lxl

(d) 
1 f(x) = cos-
X 11. If the function f (x) = (1 + x)cotx is continuous at x = 0, then f (0) will be:(a) 0 (b) 1

1 (c) e

(d) e12. f (x) is a dfÏerentiable function such that f(O) = f (1) = 0 and f' (1) = 2. If y(x) =f(ex)ef(x) then y'(O) is:(a) 0 (b) 1(c) 2 (d) 2e
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13. Let y = f (2� -l) and f'(x) = sin x2• Th�n dy at x = 0 is equal to:x +1 dx 

14.

15.

16.

(a) 1 . 1-sm 
2 

(b) sin 1
(c) 2 sin 1
(d) 2 

az az If z = f(y/x2), then x-+2y-ox ay 
(a) 2y r' (y /x2 )x2 

4y' (b) -f (y/x2 )x2 

4y' (c) -f (y/x2 )x3 

(d) 0

is:

If x = r cos 8, y = r sin 8, then a(r, S) is equal to:8(x,y) 
(a) 1 

r2 

(b) 1
(c) r

(d) 1
r

The value of the integral f =o (x 
ex I Y dx dy is:

(a) 1 -(e+l)2 
(b) 1-(e-1)2 
(c) e-1
(d) 2(e - 1)
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17. The coordinates of the foot of the perpendicular drawn from (0, 0, 0) to the plane 2x +
3y-4z + 1 = 0 are:

(a) ( ;�, ;! , 2:)
(b) (2 3 -4)29' 29' 29 

(c) (
-2 -1 i)3 ' ' 3 (d) - -1 -(2 -4) 3' ' 3

18. The equation of the straight line passing through the origin and parallel to the planes 2x +
3y + 4z = 5 and 3x + 4y + Sz = 6, is:

(a) 
X y z -=-=-1 2 1 

(b) 
X y z -=-=-1 2 -1

(c) 
X y Z_�=�=--1 2 1(d) X y Z -=ZZ == -1 -2 1 

19. The straight Im.es x '= ay + b, z � cy + d and x = a'y + b', z = c'y + d' will be
perpendicular to each other if:

(a) aa' + cc' = 1
(b) aa' + cc' + 1 = 0
( c) ac' + a' c = 1
( d) ac' + a' c + 1 = 0

x-3 y+4 z-5 
20. The coordinates of the point of intersection of the straight lines -

1
- = � = -

3
- and

x-4 y-5 z+6 -=-=-are:
1 3 - 4

(a)· (4, -7, 8) 
(b) (- 4, 7, -8)
(c) (2, -1, 2) 
(d) (-2, 1, -2)
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21. A plane passing through the fixed point (1, 1, 1) meets the coordinate axes at points A,Band C respectively. The locus of the centre of the sphere OABC (0 being the origin) will be:(a) x-1 + y-1 + z-1 = 2(b) x-1 + y-1 + z-1 = 1 ( c) x-2 + y-2 + z-2 = 1 (d) x-2 +y-2 +z-2 = 222. If the tangent plane to the sphere x2 + y2 + z2 = r2 makes intercepts at a, b, c on the coordinate axes, then:(a) a2 + b2 + c2 = r-2 (b) a-2 + b-2 + c-2 = r-4(c) a-2 + b-2 + c-2 = r2(d) a-2 + b-2 + c-2 = r-223. The perpendicular drawn from the origin to the tangent planes to the cone ax2 + by2 +cz2 = 0 lies on the surface:(a) (b) (c) (d) a b c -+-+-=0x2 y2 z2 a b c -+-+-=1x2 y2 z2 x2 y2 z2
-+-+-=0 a b C x2 y2 z2
-+-+-=1 a b C 24. The cone ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy = 0 will have three mutually perpendicular generators if:(a) !\+!\+! = 0a b c (b) a+ b + c = 0(c) (d) !\+:`+:`=o 
f g h 
af + bg +ch= 0 

7



2 2 2 
25. The eq-.1ation of the normal to the conicoid � + L _ �= 1 at the point (2, 3, 6) is: 

4 9 36 

(a) 
x-2= y-3= z-6

3 2 1 

(b) 

(c) 

(d) 

x-2 y-3 z-6--=--=--
-3 2 1 

x-2 y-3 z-6--=--=--3 -2 1 
x-2 y-3 z-6--=--=--

3 2 -1

26. The equation of the plane that intersects the surface 2x2- 3y2 + Sz2 = 1 in a conic having 
the centre at the point (2, 1, 3) is:

(a) 4x-3y + 1Sz = SO

(b) 4x + 3y-1Sz = SO

(c) 4x-3y + 1Sz = 49

(d) 4x + 3y-1Sz = 49

(a) 

(b) 

(c) 

(d) 

S tan-1 (;)

tan-1 (;)

1t -1 (5)- an -
5 s 

28. The inverse Laplace transform L-1 
{ 2

8 } is equal to:
2s -8 

(a) 2 cosh 2t

(b) !sinh 2t
2 

(c) 

(d) 

2 cosh4t 
1 -cosh 2t
2 
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29. The solution of the differential equation 2x2 dy = xy + y2 is:dx 
(a) 1+ y =c✓xX 
(b) 1- y =c¥xX 
(c) 1+ X =c✓x

y
(d) 1- X =c✓x

y

1 30. If -(c1 +c2 logx) is the general solution of the differential equationX 
d2 d x2 ^[_kx2-+y = O; x > O then k equals to:
dx2 dx 

(a) -3
(b) -1
(c) 2
(d) 3

31 S 1 . f th diff . 1 . d2y 1
1 

+ (dy)
2 • · b. . o ution o e erentia equation dx2 = \q dx IS given y:

(a) y = sinh-1(C1 + x) + C2

(b) y = cosh(C1 + x) + C2
(c) y = sinh(C1 + x) + C2 

(d) y = cosh-1(C1 + x) + C2 
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32. Let Yt (x) and Yz (x) be two linearly independent soltttions of the differential equation

x2 d2
; +x dy -4y = O. If W(x) is the Wronskian of the solutions of the differential equation,

dx dx 
then W(3)- W(2) is equal to:(a) (b) 

(c) 

(d) 

2
3

2
3

10
3

10
3

33. If D = �, then the particular solution [-1-] x-1 is:
dx xD+l 

(a) logx
1(b) -logxX 

(c) (d) 1
2logx
X 

-xlogx

34. If e-zx and sin 3x are known to be two solutions of the homogeneous linear differential
equation of order three with constant coefficients, then the differential equation must be:

d3 d2 
(a) ¨Z+ 11¨�+ I 8y = 0

dx dx (b) 
(c) 

(d) 

d3 d2 d ×¾ + 2Z¦ + 92-+ I 8y = 0dx3 dx2 dx 

d3y d2y dy --2-+9--18y=O
dx3 dx2 dx 
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35. A horizontal shelf is moving up and down with SHM of period !\ second. What should the2amplitude of the motion be such that a book placed on the shelf may not fall off?(a) rr2g 
16 (b) 

16rr2 (c) 
4rr2 (d) 16rr2g36. A particle is projected with initial velocity of projection u and angle of projection a. If theequation of the projectile is given by y = x- x2 , then the velocity of projection is:(a) iÍ(b) !\iÑ2(c) Ji

(d) 37. A heavy particle of weight W attached to a fixed point by a light inextensible chord,describes a full circle in a vertical plane. The tensions in the chord being mW and nWrespectively when the particle is at the highest and the lowest.points in the path. Then, mand n satisfy the relation:
(a) m = n + 6 (b) n = m + 6 (c) m=n+4(d) n=m+438. A particle describes an equiangular spiral r = ae8 cot a under a central force F towards thepole. The law of force is:(a) P oc kr2(b) P oc kr-5(c) P oc kr-3 (d) P oc kr-2
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39. The periodic time of a planet moving under inverse square law of acceleration is:(a) n.Ja3 / µ(b) (c) (d) 21ta
Jµn.Ja Iµ2n.ja3 Iµ40. If the ratio of the major axes of the elliptic orbits of two planets is � , then the ratio of their. 9 periodic times is equal to:(a) 2 : 3(b) 4: 9(c) 8 : 27(d) {2: V341. If the coefficient of friction is 1, then the height of the particle that can rest inside a roughhollow sphere of radius a is equal to: 

3a (a) 2(b) a-2(c) (2+/}(d) (2-/}42. If f ( r) is a function of r, where r2 = x2 + y2 + z2, then V2 f ( r) is equal to: d2f 1 df (a) dr2 
-; dr(b) (c) 

(d) 

d2f 1 df-+-­dr2 r2 drd2f 2 df-+-­dr2 r drd2f 2 df dr2 r2 dr
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43. If the function 0(x,y,z) is a solution of the Laplace's equation, then the vector function Vl¥is ---(a) a non-zero constant vector.(b) Solenoidal.(c) irrotational.( d) both solenoidal and irrotational.44. The radius of curvature of the curve x = 3 cost, y = 3 sin t, z = 4t at the point 't' is:(a) (b) (c) (d) 3 
25 
25 
3 
4 
25 
25 4 45. If r is the unit vector in the direction of the vector r, then r x dr is equal to:rxdr (a) (b) (c) -(d) r2 rxdr r2 rxdr r2 'fxd'f r3 46. A vector function f is the scalar product of a scalar function � and the gradient of anotherscalar function'¥. Then f .curl f is equal to:(a) Vjz-VJ�(b) div(Vjzx curl(V'P))(c) div(Vjzx¦P(d) O47. If S is the closed surface of the cube bounded by the planes x = y = z = 0 and x = y = z = a, then the double integral J i (xi+ )3 + zk) • n ds is:(a) 3a3(b) 2a3

(c) 

(d) 

13



48. If C is the boundary of the rectangle O 5u_ x 5u n, 0 5u y 5u 1, z = 0, then the line integral
i(sinz dx-cosx dy+siny dz) is equal to:

(a) -1
(b) 0
(c) 1
(d) 249. If C is the circle defined by x2 + y2 = 1, then the integral

L [(cosxsiny-xy)dx+ sinxcosydy] is equal to: (a) 0(b) --
3 (c) 1 -

3 (d) 250. The area R in a plane region bounded by a simple closed curve C can be expressed as:
(a) ½ 1(xdy-ydx) (c) 21(xdy+ydx)

(b) 2 i(xdy-ydx) (d) ½ 1(xdy+ydx)
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PART-II Instructions for Questions 51 to 63: 
• Answer any 10 (TEN) out of the thirteen questions.
• Each question carries 5 marks.
• No Data Books/Tables are allowed; assume the data if required anywhere.
• Unless otherwise mentioned, symbols and notations have their usual meaning.

[5 X 10 = 50] 51. Determine whether the polynomials f(x)=2x3 +x2 +x+l, g(x)=x3 +3x2 +x-2 andh(x) = x3 + 2x2 -x + 3 in vector space R[x] of all polynomials over the field of real numbersare linearly independent or not.52. If A=[� � :i, then find two non-singular matrices P and Q such that PAQ = I.0 -1 1 53. Evaluate the following limit: L. x2 (sinx+cos3 x) 1m ------
x�É (x2 + 2) (x-4)54. If u = zeax+by, where z is a homogenous function in x and y of degree n, then prove that:
au au x-+y-=(ax+by+n)u. ox ay 55. A plane passes through a fixed point (p, q, r) and cuts the coordinate axes at points A, Band

C. Show that the locus of the centre of the sphere OABC is p + q + !. = 2.
X y Z 56. Tangent planes are drawn to the conicoid ax2 + by2 + cz2 = 1 throuph the point ( a, p, y).Show that the perpendicular from the centre of the conicoid to these planes generates the

2 x2 y2 z2 

cone(ax+py+yz) =-+-b +-. a C 57. Solve the differential equation:( y . y) ( . y y) dy 0xcos-+ysm- y- ysm--xcos- x-= 
X X X X � 58. Solve the differential equation:
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59. Find the inverse Laplace transform of the function:6s-4 s2 -4s+2060. At the end of three successive seconds the distances of a particle moving with SHM from itsmean position measured in the same direction are 1, 5 and 5 respectively. Prove that theperiod of complete oscillation is 21k/cos-1 (3/5).61. Four light rods are joined together to form a quadrilateral OABC. The lengths of the rods aresuch that OA = OC = a and AB = CB = b. The frame-work hangs in a vertical plane with
OA and OC resting in contact with two smooth pegs distance l apart and on the samehorizontal level. A weight W hangs at B. If 8 and Jh are the inclinations of OA and AB to thehorizontal, then prove that:(a) a cos 8 = b cos Jh and(b) i l sec2 8 sin Jh = a sin(8 + Jh) 62. If A = A.i + AiJ + Ai is any non-zero vector function, then prove that:Vx(VxA) = V(V ·A)-V2A 63. If A = Ni -M], then show that the formula in the Green's theorem in plane may be writtenas

J 1 div A dxdy = iA·n ds,where ii is the outward drawn unit normal vector to the curve C bounding the region R and s is the arc length of C. 
16



PART-III Instructions for Questions 64 to 71: 
• Answer any 5 (FIVE) out of the eight questions.
• Each question carries 10 marks.
• No Data Books/Tables are allowed; assume the data if required anywhere.
• Unless otherwise mentioned, symbols and notations have their usual meaning.

64. Let L: R3 ➔ R2 be the linear transformation defined by L ([�]) = [; � �]

[10 X 5 = 50]
Let S = {v1 , v2 , v3} and T {w1 , w2} be the bases for R3 and R2 respectively, where -

Find the matrix of L with respect to Sand T.

65. Show that the function u = x3y2 (1-x-y) aŃŐ its max�um value at the point(½,½}

Also, find its maximum value.

66. Evaluate the triple integral Jf fv f(x, y,z)dV, where Vis the hemisphere with centre at origin

and radius 1, lying above the plane z = 0 and f (�, y, z) = z3 .Jx2 + y2 + z2 ,

2 2 
67. The section of a cone with vertex P and guiding curve x

2 + y 
2 = 1, z = 0 by the plane x = 0

a b 
. xi y2 +22 

is a rectangular hyperbola. Show that the locus of P is 2 + 2 = 1 . 

68. Solve the following differential equation:

a b 

x3 _[+2x2 _¨+2y = 10 x+- . d3 d2 ( I) 
dx3 dx2 · X 

69. Solve the following differential equation:
d 2 d (1 + x)2 Z� + (1 +x)Y-+ y :x 4coslog(l + x). 
dx dx 

70. A particle of mass mis placed at the highest point of a smooth vertical circle of radius a and
is allowed to slide down starting with a negligible velocity. Prove that it will leave the circle
and subsequently describe a parabola of latus rectum �� a
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71. Evaluate J 1 F.n dS, where F = l 8zi -12J + 3yk and S is the surface of the plane 2x + 3y +6z = 12 nÈthe first octant.
18



PART-IV Instructions for Questions 72 to 75:72. 73. 74. • Answer any 2 (TWO) out of the four questions.
• Each question carries 25 marks.
• No Data Books/Tables are allowed; assume the data if required anywhere.
• Unless otherwise mentioned, symbols and notations have their usual meaning.

[25 X 2 = 50]

(a) Find all the eigenvalues and the associated eigenvectors of the matrix -[1 1 2] 
A= -1 2 1 

0 1 3 

(b) Show that the set S = {t2 + 1, t-1, 2t + 2} forms a basis for the vector space P2.

(b) Find the equation of the right circular cylinder, which passes through the circle
x2 + y2 + z2 = 9, x-y + z = 3. 

(a) Use method of variation of parameters to solve the following differential equation:d2 d x2 _Ñ+xi-y = x2ex . dx2 dx 
(b) A particle under a central force µ[2(a2 + b2)u5- 3a2b2u7] is projected at a distance

a with velocity {µ/ a in a direction at right angles to the initial distance. Prove that

the path is the curve r2 = a2 cos2 6 + b2 sin2 (J.

75. Verify the Gauss divergence theorem for the function F = yi + x] + z2k_ over the cylindrical
region bounded by the surfaces x2 + y2 = a2, z = 0, z = h.

~~~~***~~~~ 
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